Optimization on Manifolds, Appendix: Topology

Ibrahim Akbar

April 8, 2018

1 Definitions

This serves as a light introduction into the topic of topology, but is not sufficient to have a complete or deep understanding. For further information, I suggest reading James Munkres' *Topology* text for a thorough introduction.

Just as an n-dimensional vector space is an abstraction of \mathbb{R}^n , a topology on a set X is an abstraction of open sets in \mathbb{R}^n .

A **topology** on a set X is a collection \mathcal{T} of open subsets of X such that:

- 1. $X, \{0\} \in \mathcal{T}$
- 2. Given a subcollection S of T, $\cup_i S_i \in T$
- 3. Given a finite subcollection S of T, $\cap_i S_i \in T$

Thus a topology is the couple (X, \mathcal{T}) , but when notation allows it will be abbreviated to X. Currently, the definition for topology is not well-defined as we do not know what "open" means.

Let X be a topological space. Let A be a subset of X. A **neighborhood** of a point x on X is a subset \mathcal{V} that includes an open set, \mathcal{U} containing x.

$$x \in \mathcal{U} \subset \mathcal{V} \subseteq X$$

A limit point or accumulation point of a subset A of X is a point x of X such that every neighborhood of x intersects A in some point other than x. Note that it is important to distinguish between intersecting at x and somewhere else. If the restriction of intersecting at points other than were to be removed x would be a **point** of closure. Thus every point of closure is a limit point but not necessarily every limit point is a point of closure.

A subset is **closed** if and only if it contains all it's limit points. An open set is naturally one that does not contain all it's limit points.

A sequence of points $\{x_k\}_{k=1,2,...}$ of X converges to a point $x \in X$ if for every neighborhood \mathcal{U} of x there exists a positive integer K such that x_k belongs to \mathcal{U} for all $k \geq K$.

Since topology needs to satisfy relatively few axioms it is natural that properties that may hold for \mathbb{R}^n may not hold for X. As an example a **singleton** which is a set containing only one element may not be closed in the topological sense. Take for example the topology of [-1,1]. The open sets are [-1,a) for a > 0, (b,a) for a < 0, b > 0, and (b,1] for b < 0 (Why?). To avoid such situations **separation axioms** have been introduced to make a distinction between topologies.

A topological space X is T_1 ; accessible or **Fréchet**, if for any distinct points x and y of X there is an open set containing x and not y. (Every singleton is closed.)

A topological space X is T_2 , **Hausdorff**, if any two distinct points of X have disjoint neighborhoods. A Hausdorff topology means that any sequence of points on X converges to at most one point of X. (Why?)

Let \mathcal{T}_1 and \mathcal{T}_2 be topological spaces of X. If $\mathcal{T}_1 \subseteq \mathcal{T}_2$ then \mathcal{T}_2 is said to be finer.

A base or basis for a topology on set X is a collection \mathcal{B} of subsets of X such that

- 1. each $x \in X$ belongs to at least one element in \mathcal{B}
- 2. if $x \in (B_1 \cap B_2)$ with $B_1, B_2 \in \mathcal{B}$, then there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

If \mathcal{B} is a base for topology \mathcal{T} then $\cup_i \mathcal{B} = \mathcal{T}$ and a topology is denoted as **second-countable** if it's base is finite.

If X and Y are topological spaces then the **product topology** $X \times Y$ has the base \mathcal{B} which is the collection of all sets of the form $U \times V$ where U is an open set of X and V is an open set of Y.

If Y is a subset of a topological space (X, \mathcal{T}) . Then $\mathcal{T}_Y = \{Y \cap U \mid U \in \mathcal{T}\}$ is a topology on Y called the subspace topology.

A collection \mathcal{A} of subsets of X cover or is a covering of X if the union of the elements of \mathcal{A} is equal to X.

Heine-Borel Theorem: A subset of \mathbb{R}^n with the subspace topology is compact if and only if it is closed and bounded.